Explanation of machine-dependent constants
beta = Radix for the floating-point system minexp = Smallest representable power of beta maxexp = Smallest power of beta that overflows XSMALL = Argument below which BESK0 and BESEK0 may each be represented by a constant and a log. largest X such that 1.0 + X = 1.0 to machine precision. XINF = Largest positive machine number; approximately betamaxexp XMAX = Largest argument acceptable to BESK0; Solution to equation: W(X) * (1-1/8X+9/128X2) = beta*minexp where W(X) = EXP(-X)SQRT(PI/2X)
Approximate values for some important machines are: beta minexp maxexp
CRAY-1 (S.P.) 2 -8193 8191 Cyber 180/185 under NOS (S.P.) 2 -975 1070 IEEE (IBM/XT, SUN, etc.) (S.P.) 2 -126 128 IEEE (IBM/XT, SUN, etc.) (D.P.) 2 -1022 1024 IBM 3033 (D.P.) 16 -65 63 VAX D-Format (D.P.) 2 -128 127 VAX G-Format (D.P.) 2 -1024 1023
XSMALL XINF XMAX
CRAY-1 (S.P.) 3.55E-15 5.45E+2465 5674.858 Cyber 180/855 under NOS (S.P.) 1.77E-15 1.26E+322 672.788 IEEE (IBM/XT, SUN, etc.) (S.P.) 5.95E-8 3.40E+38 85.337 IEEE (IBM/XT, SUN, etc.) (D.P.) 1.11D-16 1.79D+308 705.342 IBM 3033 (D.P.) 1.11D-16 7.23D+75 177.852 VAX D-Format (D.P.) 6.95D-18 1.70D+38 86.715 VAX G-Format (D.P.) 5.55D-17 8.98D+307 706.728
Error returns
The program returns the value XINF for ARG .LE. 0.0, and the BESK0 entry returns the value 0.0 for ARG .GT. XMAX.
Intrinsic functions required are:
EXP, LOG, SQRT
Latest modification: March 19, 1990
Authors: W. J. Cody and Laura Stoltz Mathematics and Computer Science Division Argonne National Laboratory Argonne, IL 60439
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
double precision | :: | ARG | ||||
double precision | :: | RESULT | ||||
integer | :: | JINT |