Explanation of machine-dependent constants
beta = Radix for the floating-point system
minexp = Smallest representable power of beta
maxexp = Smallest power of beta that overflows
XLEAST = Smallest acceptable argument, i.e., smallest machine
number X such that 1/X is machine representable.
XSMALL = Argument below which BESK1(X) and BESEK1(X) may
each be represented by 1/X. A safe value is the
largest X such that 1.0 + X = 1.0 to machine
precision.
XINF = Largest positive machine number; approximately
betamaxexp
XMAX = Largest argument acceptable to BESK1; Solution to
equation:
W(X) * (1+3/8X-15/128X2) = beta*minexp
where W(X) = EXP(-X)SQRT(PI/2X)
Approximate values for some important machines are: beta minexp maxexp
CRAY-1 (S.P.) 2 -8193 8191 Cyber 180/185 under NOS (S.P.) 2 -975 1070 IEEE (IBM/XT, SUN, etc.) (S.P.) 2 -126 128 IEEE (IBM/XT, SUN, etc.) (D.P.) 2 -1022 1024 IBM 3033 (D.P.) 16 -65 63 VAX D-Format (D.P.) 2 -128 127 VAX G-Format (D.P.) 2 -1024 1023
XLEAST XSMALL XINF XMAX
CRAY-1 1.84E-2466 3.55E-15 5.45E+2465 5674.858 Cyber 180/855 under NOS (S.P.) 3.14E-294 1.77E-15 1.26E+322 672.789 IEEE (IBM/XT, SUN, etc.) (S.P.) 1.18E-38 5.95E-8 3.40E+38 85.343 IEEE (IBM/XT, SUN, etc.) (D.P.) 2.23D-308 1.11D-16 1.79D+308 705.343 IBM 3033 (D.P.) 1.39D-76 1.11D-16 7.23D+75 177.855 VAX D-Format (D.P.) 5.88D-39 6.95D-18 1.70D+38 86.721 VAX G-Format (D.P.) 1.12D-308 5.55D-17 8.98D+307 706.728
Error returns
The program returns the value XINF for ARG .LE. 0.0 and the BESK1 entry returns the value 0.0 for ARG .GT. XMAX.
Intrinsic functions required are:
LOG, SQRT, EXP
Authors: W. J. Cody and Laura Stoltz Mathematics and Computer Science Division Argonne National Laboratory Argonne, IL 60439
Latest modification: January 28, 1988
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
double precision | :: | ARG | ||||
double precision | :: | RESULT | ||||
integer | :: | JINT |